

Circular Segment

 as the shaded region. The entire wedge-shaped area is known as a circular sector.
Let R be the radius of the circle, c the chord length, s the arc length, \bar{z} the height of
the arced portion, and d the height of the triangular portion. Then the radius is
$R=h+d$,
the arc length is
the arc length is
$s=R \theta$,
ght d is
$d=R \cos \left(\frac{1}{2} \theta\right)$
(3)
$=\frac{1}{2} \cot \left(\frac{1}{2} \theta\right)$
$=\frac{1}{2} \sqrt{4 R^{2}-c^{2}}$,
(4)
(5)
and the length of the chord is
$c=2 R \sin \left(\frac{1}{2} \theta\right)$
(6)
$=2 d \tan \left(\frac{1}{2} \theta\right)$
(7)
$=2 \sqrt{R^{2}-d^{2}}$
$=2 \sqrt{h(2 R-k)}$.
(8)
(9)

From elementary trigonometry, the angle θ obeys the relationships
$\theta=\frac{s}{R}$
$=2 \cos ^{-1}\left(\frac{d}{R}\right)$
$=2 \tan ^{-1}\left(\frac{c}{2 d}\right)$
$=2 \sin ^{-1}\left(\frac{c}{2 R}\right)$.
(13)
sea A of the (shaded) segment is then simply given by the area of the circulur
$A=A_{\text {sector }}-A_{\text {tisoseles stingle }}$.
Plugging in gives

$$
\begin{aligned}
A & =\frac{1}{2} R^{2}(\theta-\sin \theta) \\
& =\frac{1}{2}(R s-c d) \\
& =R^{2} \cos ^{-1}\left(\frac{d}{R}\right)-d \sqrt{R^{2}-d^{2}} \\
& =R^{2} \cos ^{-1}\left(\frac{R-h}{R}\right)-(R-k) \sqrt{2 R h-h^{2}},
\end{aligned}
$$

here the for R

ank) based on the height of the fluid in the tank.
The area can also be found directly by integration as

$$
A=\int_{-R \sin \left(\frac{1}{2} \theta\right)}^{\operatorname{Risin}\left(\frac{1}{2} \theta\right)} \int_{\operatorname{Ros}\left(\frac{1}{2} \theta\right)}^{\sqrt{R^{2}-x^{2}}} d y d x .
$$

It follows that the weighted mean of y is

$$
\begin{aligned}
\langle y\rangle & =\int_{-R \sin }^{R \sin \left(\frac{1}{2} \theta\right)}\left(\tilde{L}^{\theta}\right) \\
& =\frac{2}{3} R^{2} \sin ^{2}\left(\frac { 1 } { 2 } \left(\frac{1}{2} \theta\left(\frac{1}{2} \theta\right)\right.\right.
\end{aligned}
$$

so the geometric centroid of the circular segment is

$$
\bar{y}=\frac{\langle y\rangle}{A}=\frac{4 R \sin ^{3}\left(\frac{1}{2} \theta\right)}{3(\theta-\sin \theta)} \text {. }
$$

Checking shows that this obeys the proper limits $\overline{\bar{y}}=4 R(\beta \pi)$ for a semicircle $(\theta=\pi)$
and $\overline{\bar{y}}=\mathrm{R}$ for a point mass at the to of the segment $(\theta \rightarrow 0)$.

To find the value of \bar{k} such that the circular segment has area equal to $1 / 4$ that of the arcle, plug $A=\pi R^{2} / 4$ into equation (22) and divide both sides by R^{2} to get

$$
\begin{equation*}
\frac{1}{4} \pi=\cos ^{-1}(1-x)-(1-x) \sqrt{2 x-x^{2}}, \tag{23}
\end{equation*}
$$

where $x=h / R$. This cannot be solved analytically, but the solution can be found , corresponding to $h=0.596027 R$.
pproximate fomus for the arc length and area are

$$
s z \sqrt{c^{2}+\frac{16}{3} k^{2}}
$$

$$
A \approx \frac{2}{3} c h+\frac{h^{3}}{2 c},
$$

accurate to within 0.1% for $0^{\circ} \leq \theta \leq 150^{\circ}$ and 0.8% for $150^{\circ} \leq \theta \leq 180^{\circ}$ (Harris and
SEE Also: Chord, Circle-Circle Intersection, Circular Sector, Cylindrical Segment, Lens, arabolic Seament, Reuleaux Triangle, Sagitta, Spherical Segment.

Eferences:
Sever, W. H. (Ed.). CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 125, 1987.

Kerr, W. F. and Bland, J. R. Solid Mensurution with Proofs, 2nd ed. New York: Wiey, p. $4,1988$.
Last modifie: April , 2003
CITE THIS AS:

都

