2021-07-11 09:48 PM - last edited on 2021-09-14 09:02 AM by Noemi Balogh
Solved! Go to Solution.
2021-07-13 11:47 AM
2021-07-13 08:20 PM
radius_of_circle = Arc Length/Subtended Angle in Radians r = s/θ
2021-07-13 09:18 PM
2021-07-13 09:45 PM
2021-07-13 10:34 PM
2021-07-14 12:53 AM
2021-07-14 12:58 AM
2021-07-14 11:13 AM
2021-07-14 11:52 AM
2021-07-16 03:14 PM
dict geo, p if haskey(LABEL_ASSOC_ELEM_GEOMETRY.referenceLine2D.contour.edges[1].ArcAngle) then geo.has = "yes" geo.ang = LABEL_ASSOC_ELEM_GEOMETRY.referenceLine2D.contour.edges[1].ArcAngle geo.num = vardim1(LABEL_ASSOC_ELEM_GEOMETRY.referenceLine2D.contour.edges) p = LABEL_ASSOC_ELEM_GEOMETRY.referenceLine2D.contour geo.dir.x = p.edges[2].begPoint.x - p.edges[1].begPoint.x geo.dir.y = p.edges[2].begPoint.y - p.edges[1].begPoint.y geo.chord = (geo.dir.x^2 + geo.dir.y^2)^0.5 geo.rad = geo.chord/(2*sin(geo.ang/2)) else geo.has = "no" geo.ang = 0 geo.num = 0 geo.rad = 0 endif hotspot2 0,0 if geo.num > 2 then text2 0,0, "poly" else text2 0,0, "ang= " + str("%", geo.ang) + "\nrad= " + str("%", geo.rad) endifworks for AC23 and younger